The E. Claiborne Robins Stadium was commissioned by the University of Richmond to bring football back to campus. From 1930 until 2009, the University of Richmond Football team competed at City Stadium located five miles from campus. Completed just in time for the 2010 football season, the stadium has become a fixture on campus.

Named after benefactor to the University of Richmond, E. Claiborne Robins, the stadium has a seating capacity of 9,000 that is divided into three seating sections: the West Grandstands, Seasonal end-zone, and the East Grandstands. In the West Grandstand, private boxes hang over the main seating, and are adjacent to an indoor entertainment club. The East Grandstand hosts team officials, game officials, and technical support personnel for scoreboard, field lighting, and sound. Both Grandstands have a concession stand and restrooms on the lower concourse level. There is an unfinished level in the West and East grandstands that provides opportunity for future expansion.

In addition to football, the stadium supports soccer, lacrosse, and track programs and is able to host single game and tournament competition. Furthermore, the stadium provides space for community events like the Virginia Special Olympics, as well as playing fields for youth sports.

PROJECT HIGHLIGHTS

<table>
<thead>
<tr>
<th>LEED® Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Claiborne Robins Stadium</td>
</tr>
<tr>
<td>University of Richmond</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>Location.....28 Westhampton Way Richmond, VA 23173</td>
</tr>
<tr>
<td>Rating System..LEED-NC v2.2</td>
</tr>
<tr>
<td>Certification Achieved..........................Silver</td>
</tr>
<tr>
<td>Total Points Achieved............................36/69</td>
</tr>
<tr>
<td>Sustainable Sites.................................8/14</td>
</tr>
<tr>
<td>Water Efficiency.................................4/5</td>
</tr>
<tr>
<td>Energy and Atmosphere..........................3/17</td>
</tr>
<tr>
<td>Materials and Resources.........................6/13</td>
</tr>
<tr>
<td>Indoor Environmental Quality..................11/15</td>
</tr>
<tr>
<td>Innovation and Design............................4/5</td>
</tr>
</tbody>
</table>

- **30%** Reduction of water use compared to regular buildings
- **42%** Construction materials sourced within 500 miles
- **90%** On site construction waste diverted from landfill
- **96%** Natural daylight to all regularly occupied spaces

Please print this project profile only if necessary.
If printing is required, please print double sided and recycle when finished. Thank you!
PROJECT TEAM

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>University of Richmond</td>
</tr>
<tr>
<td>Architect</td>
<td>BCWH Architects</td>
</tr>
<tr>
<td>Contractor</td>
<td>Hourigan Construction</td>
</tr>
<tr>
<td>MEP Engineer</td>
<td>MJ Thompson</td>
</tr>
<tr>
<td>Interior Designer</td>
<td>University of Richmond</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td>Dunbar Milby Williams Pittman & Vaughan</td>
</tr>
<tr>
<td>Civil Engineer</td>
<td>Draper Aden & Associates</td>
</tr>
<tr>
<td>Landscape Architect</td>
<td>Higgins and Gersteinmaier</td>
</tr>
<tr>
<td>LEED Consultant</td>
<td>University of Richmond</td>
</tr>
</tbody>
</table>

ADDITIONAL RESOURCES

Office for Sustainability
http://sustainability.richmond.edu/

Office for Sustainability Resources
http://sustainability.richmond.edu/buildings/index.html

Follow the Office for Sustainability
https://www.facebook.com/SpiderSustainability

https://twitter.com/BeAGreenSpider
SUSTAINABLE SITES

With the opening of the new on-campus stadium, members of the University community can easily come to the University of Richmond’s campus to watch football, soccer, and lacrosse games, track and field events, and other competitions.

Like most campus facilities, the stadium is close in proximity to other important facilities such as a library, restaurant, post office, gym, and a community center. Because of this, members of the University community can easily move from the stadium to other campus services.

The location of the stadium also gives individuals the option to travel there in a sustainable manner. Located within .25 miles, there is a GRTC bus line that has connections to the rest of the greater Richmond area. The construction of the stadium added no new parking to the site.

To improve the environment of the greater Richmond area, the University set aside a plot of land equal to the 55,359 square feet of the building footprint at another University-owned location. The water quality is controlled by directing water run-off into Westhampton Lake, which acts as a best management practice that removes total suspended solids from runoffs, controlling the quality of water that flows into the James River and Chesapeake Bay watersheds. To mitigate the heat island effect, 95.29% of the roofing materials used on the project are highly reflective.

WATER EFFICIENCY

To maximize water efficiency, the turf field is made of a synthetic surface that requires no irrigation and uses recycled rubber as infill. To prevent wasteful water use, the vegetative landscape design utilizes native plants that require no permanent irrigation system.

Additionally, the stadium reduced potable water use by 42.7% from a calculated baseline design through the installation of dual flush water closets, ultra low-flow lavatories, and low-flow urinals, showers, and kitchen sinks.
ENERGY AND ATMOSPHERE

Through fundamental commissioning of the building energy system and implementation of energy saving options, the project is designed to achieve an energy cost savings of 15.3% compared to baseline calculations. To optimize energy performance, limit resource consumption, and alleviate water consumption, enhanced commissioning measures were taken to verify that the stadium was designed and constructed as initially intended.

MATERIALS AND RESOURCES

During the construction process, 875.64 tons (over 90%) of on-site generated construction waste was diverted from the landfill. Twenty-one percent, by value, of the project building materials used in construction, were manufactured using recycled materials.

To promote the regional economy and limit the carbon footprint from transporting materials, 42% of the total building materials value including materials and/or products that were extracted, processed, and manufactured within 500 miles of the project site.
INDOOR ENVIRONMENTAL QUALITY

One of the primary design goals of the stadium was to ensure that spectators can enjoy the sporting events in a safe and healthy environment. During the construction process, measures were taken to ensure that the workers were in a safe and healthy environment; air handlers with filters removed particulate matter. The filtration media was replaced prior to occupancy.

To rid the building of potentially dangerous construction-related chemicals, a flush-out was performed prior to occupancy, supplying a total air volume of 14,000 cubic feet of outdoor air per square foot of floor area while maintaining a relative humidity of 60%.

To limit the amount of harmful chemicals that could negatively impact the indoor air quality and health, low-VOC paints, carpets, coatings, sealants were used in all areas of the project. Design specifications also ensured all installed indoor composite wood and agrifiber materials contained no urea-formaldehyde.

To maximize occupant comfort, lighting controls are installed that enable 100% of occupants to make adjustments to suit individual needs. To ensure that occupants are satisfied with the building's indoor environment, a thermal comfort survey was distributed to building occupants within the first 6 months of occupancy. The survey is used to identify any areas that might be in need of thermal adjustment in the building.

Specific stadium design incorporates both environmental and occupant benefits. The stadium design provides natural daylight to 96% of all regularly occupied spaces. Additionally, to bridge the gap between the indoor and outdoor environments, the project provides outside views for almost 96% of all regularly occupied areas.

INNOVATION AND DESIGN

In accordance with University guidelines, the E. Claiborne Robins Stadium utilizes an integrated pest management system to keep a low level of pest populations while limiting the amount of hazardous pesticides used. The University also uses a University-wide green house-keeping policy that limits the use of harmful products on occupants and the watershed.

The stadium achieved exemplary performance in water efficiency by exceeding LEED requirements through the use of proactive measures to limit the water use in the building through dual flush water closets, ultra low-flow lavatories, low flow urinals, showers, and kitchen sinks.
LEED Score Card

LEED for New Construction

Points Achieved

<table>
<thead>
<tr>
<th>Sustainable Sites</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Efficiency</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy & Atmosphere</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials & Resources</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Environmental Quality</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

1 Credit 1

- **Credit 1**: Site Selection
 - **Possible Points**: 1

2 Credit 1

- **Credit 1**: Development Density & Community Connectivity
 - **Possible Points**: 1

3 Credit 1

- **Credit 1**: Brownfield Redevelopment
 - **Possible Points**: 1

4 Credit 1

- **Credit 1**: Alternative Transport, Public Transportation Access
 - **Possible Points**: 1

5 Credit 1

- **Credit 1**: Alternative Transport, Bicycle Storage & Changing Rooms
 - **Possible Points**: 1

6 Credit 1

- **Credit 1**: Alternative Transport, Low-Emitting & Fuel-Efficient Vehicles
 - **Possible Points**: 1

7 Credit 1

- **Credit 1**: Alternative Transport, Parking Capacity
 - **Possible Points**: 1

8 Credit 1

- **Credit 1**: Site Development, Protect or Restore Habitat
 - **Possible Points**: 1

9 Credit 1

- **Credit 1**: Site Development, Maximize Open Space
 - **Possible Points**: 1

10 Credit 1

- **Credit 1**: Stormwater Design, Quantity Control
 - **Possible Points**: 1

11 Credit 1

- **Credit 1**: Stormwater Design, Quality Control
 - **Possible Points**: 1

12 Credit 1

- **Credit 1**: Heat Island Effect, Roof
 - **Possible Points**: 1

13 Credit 1

- **Credit 1**: Heat Island Effect, Roof
 - **Possible Points**: 1

Y Prereq 1: Construction Activity Pollution Prevention

Y Prereq 2: Site Selection

Y Prereq 3: Development Density & Community Connectivity

Y Prereq 4: Brownfield Redevelopment

Y Prereq 5: Alternative Transport, Public Transportation Access

Y Prereq 6: Alternative Transport, Bicycle Storage & Changing Rooms

Y Prereq 7: Alternative Transport, Low-Emitting & Fuel-Efficient Vehicles

Y Prereq 8: Alternative Transport, Parking Capacity

Y Prereq 9: Site Development, Protect or Restore Habitat

Y Prereq 10: Site Development, Maximize Open Space

Y Prereq 11: Stormwater Design, Quantity Control

Y Prereq 12: Stormwater Design, Quality Control

Y Prereq 13: Heat Island Effect, Roof

Y Prereq 14: Heat Island Effect, Roof

Please print this project profile only if necessary. If printing is required, please print double sided and recycle when finished. Thank you!